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Outline 

Day 1 
•  Review of storage systems and parallel file 

systems 
•  Parallel I/O interfaces 

–  MPI-IO 
–  Parallel I/O libraries 

•  Lustre Striping 
•  Best practices and recommendations 
Day 2 / Lab Session 
•  HDF5 parallel I/O library 
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NERSC is the Primary Computing 
Center for DOE Office of Science 

• NERSC serves a large population 
– Approximately 3000 users, 400 projects, 500 codes 
– Science-driven 
– Many collaborative international 
  projects 

• Focus on “unique” resources 
– Expert consulting and other services 
– High end computing systems 
– High end storage systems 

• NERSC is known for: 
– Strong user services 
– Large and diverse user workload 
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Physics Math + CS Astrophysics 
Chemistry Climate Combustion 
Fusion Lattice Gauge Life Sciences 
Materials Other 



NERSC Systems for Science 
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Large-Scale Computing System 
Franklin (NERSC-5): Cray XT4 

•  9,532 compute nodes; 38,128 cores 
•  ~25 Tflop/s on applications; 356 Tflop/s peak  

Hopper (NERSC-6): Cray XE6  
•  Phase 1: Cray XT5, 668 nodes, 5344 cores 
•  Phase 2: > 1 Pflop/s peak, (Summer 2010) 

HPSS Archival Storage 
•  40 PB capacity 
•  4 Tape libraries 
•  150 TB disk cache 

NERSC Global  
  Filesystem (NGF) 
Uses IBM’s GPFS 
1.5 PB; 5.5 GB/s 

Clusters 
  105 Tflops  
   combined  
Carver 

•  IBM iDataplex cluster 
PDSF (HEP/NP) 

•  Linux cluster (~1K cores) 
Cloud testbed 

•  IBM iDataplex cluster 

Analytics 

•  Euclid (512 GB 
shared 
memory) 

•  GPU testbed 
(48 nodes) 



Supernova Core-Collapse 
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PIs:   S. Woosley (UCSB),        
A. Burrows (Princeton) 

Objective:  First principles 
understanding of supernovae of all 
types, including radiation transport, 
spectrum formation, and 
nucleosynthesis. 

Accomplishments: VULCAN: NERSC 
core collapse runs explain 
magnetically-driven explosions in 
rapidly-rotating cores. 

•  First 2.5-D, detailed-microphysics 
radiation-magnetohydrodynamic 
calculations;  first time-dependent 2D 
rad-hydro supernova simulations 
with multi-group and multi-angle 
transport. 

NERSC: 2M hours alloc in 2009; 2.2M used 
so far, requesting additional. 

Implications:  Will help us confront 
one of the greatest mysteries in high-
energy physics and astrophysics  -- 
the nature of dark energy.  

The exploding core of a massive star. a), b), and c) 
show morphology of selected isoentropy, isodensity 
contours during the blast; (d) AMR grid structure at 

coarser resolution levels." 

a b 

c d 



High Energy Physics: Palomar 
Transient Factory  
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Objective:  Process, analyze & make 
available data from Palomar Transient Sky 
survey (~300 GB / night) to expose rare and 
fleeting cosmic events. 

Accomplishments: Automated software for 
astrometric & photometric analysis and 
real-time classification of transients. 

  • Analysis at NERSC is fast enough to 
reveal transients as data are collected. 

  • Has already uncovered more than 40 
supernovae explosions since Dec., 2008. 

  •  Uncovering a new event about every 12 
minutes. 

NERSC: 
 • 40k hours + 1M HPSS in 2009; Use of 

NERSC NGF + gateway 

Implications: First survey dedicated solely 
to finding transient events. 

.  

PI: P. Nugent (LBNL) 

Two manuscripts submitted to Publications of the 
Astronomical Society of the Pacific 

PTF project data flow 



Getting bigger all the time 
•  User I/O needs 

growing each year in 
scientific community 

•  For our largest users 
I/O parallelism is 
mandatory 

•  I/O remains a 
bottleneck for many 
users   

Images from David Randall, Paola Cessi, John Bell, T Scheibe 



Why is Parallel I/O for science 
applications difficult? 

•  Scientists think about 
data in terms of their 
science problem: 
molecules, atoms, 
grid cells, particles  

•  Ultimately, physical 
disks store bytes of 
data  

•  Layers in between, the 
application and 
physical disks are at 
various levels of 
sophistication   

Images from David Randall, Paola Cessi, John Bell, T Scheibe 



Parallel I/O:  
A User Perspective 

•  Wish List 
–  Write data from multiple processors into a single file 
–  File can be read in the same manner regardless of the 

number of CPUs that read from or write to the file. (eg. 
want to see the logical data layout… not the physical 
layout) 

–  Do so with the same performance as writing one-file-per-
processor 

–  And make all of the above portable from one machine to 
the next 

•  Inconvenient Truth: Scientists need to 
understand about I/O in order to get good 
performance  



I/O Hierarchy Slide 

Storage Device 

Parallel File System 

MPI-IO Layer 

High Level IO Library 

Application 



Storage Media 

Magnetic Hard 
Disk Drives 

Solid State Storage Devices (flash) 

Magnetic Tape 



Magnetic Hard Disk Drives 

Source: Popular Science, Wikimedia Commons 



Some definitions 

•  Capacity (in MB, GB, TB) 
– Measured by areal density 
– Areal density = track density * 

linear density 
•  Transfer Rate (bandwidth) – 

MB/sec 
– Rate at which a device reads 

or writes data 
•  Access Time (milli-seconds) 

– Delay before the first byte is 
read 



Access Time 

•  T(access) = T(seek) + T(latency) 
–  T(seek) = time to move head to correct track 
–  T(latency) = time to rotate to correct sector 

•  T(seek) = ~10 msec 
•  T(latency) = 4.2 msec 

•  T(access) = 14 msec!! 
•  How does this compare to clock to to 

to clock speed? 
Image from Brenton Blawat 



Why isn’t a hard drive faster? 

•  Hard disk drives operate at about 30-100s 
MB/sec 

•  Areal density getting higher 
•  Improved magnetic coating on platters 
•  More accurate control of head position on 

platter 
•  Rotational rates slowly increasing 
•  What’s the problem? 

• Electronics supporting the head can’t keep up with 
increases in density 
• Access time always a fixed cost 



Disk Transfer Rates over Time 

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph. 

15 Slide from Rob Ross, Rob Latham at ANL 



RAID 

•  Individual disk drives obviously not fast enough for 
supercomputers 

•  Need parallelism 
•  Redundant Array of Independent Disks 

•  Different configurations of RAID offer various levels 
of data redundancy and fail over protection  



Solid State Storage 

•  More reliable than hard disk drives 
–  No moving parts 
–  Withstand shock and vibration 

•  “Non-volatile” retain data without power 
•  Slower than DRAM memory, faster than hard disk 

drives 
•  Relatively cheap 



File Systems 
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What is a File System? 

•  Software layer between the Operating System and 
Storage Device which creates abstractions for 
–  Files 
–  Directories 
–  Access permissions 
–  File pointers 
–  File descriptors 

•  Moving data between memory and storage devices 
•  Coordinating concurrent access to files 
•  Managing the allocation and deletion of data blocks 

on the storage devices 
•  Data recovery 

J.M. May “Parallel IO for High Performance Computing  



From disk sectors to files 

•  File systems allocate space in “blocks”, 
usually multiples of disk “sector” 

•  A file is created by the file system on one or 
more unused blocks 
–  The file system must keep track of used and 

unused blocks 
–  Attempts to allocated nearby blocks to the same 

file 
•  “inodes” are special blocks that contain a list 

of all the blocks in a file.  



Inodes store Metadata 

•  Data about data 
•  File systems store information about files 

externally to those files. 
•  Linux uses an inode, which stores 

information about files and directories  (size 
in bytes, device id, user id, group id, mode, timestamps, 
link info, pointers to disk blocks, file size…) 

•  Any time a file’s attributes change or info 
is desired (e.g., ls –l) metadata has to be 
retrieved from the metadata server  

•  Metadata operations are IO operations 
which require time and disk space. 



File Systems 

•  Your laptop or desktop has a file system, 
referred to as a “local file system” 

•  A networked file system allows multiple 
clients to access files  
–  Treats concurrent access to the same file as a 

rare event 
•  A parallel file system builds on the concept 

of a networked file system 
–  Efficiently manages hundreds to thousands of 

processors accessing the same file concurrently 
–  Coordinates locking, caching, buffering and file 

pointer challenges 
–  Scalable and high performing  

J.M. May “Parallel IO for High Performance Computing  



There are a number of 
parallel file systems  

•  These are three parallel file systems widely used on 
the top 500 supercomputers  

GPFS 



Generic Parallel File System 
Architecture 

Compute 
Nodes 

Internal 
Network 

Storage 
Hardware -- 
Disks 

Disk controllers - 
manage failover 

I/O Servers 

External 
Network - 
(Likely FC) 

MDS I/O I/O I/O I/O I/O I/O I/O 



Galera Luster Configuration in /work 
(my best guess) 
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 ?? OSS 
144 OSTs 

Galera Compute and Interactive Nodes 

“interconnect” 

6 DDN 
48 LUN 

FC Network 

… 

… 

Peak I/O system 
bandwidth  is !
~5-7 Gbyte/sec."



Fault Tolerance  
and Parallel File Systems 

Combination of hardware and software ensures 
continued operation in face of failures: 

–  RAID techniques hide disk failures 
–  Redundant controllers and shared access to storage 
–  Heartbeat software and quorum directs server failover 

26 Slide from Rob Ross, Rob Latham at ANL 



File Buffering and Caching 

•  Buffering  
–  Used to improve performance 

•  File system collects full blocks of data before transferring 
data to disk  

•  For large writes, can transfer many blocks at once 

•  Caching 
–  File system retrieves an entire block of data, even if all 

data was not requested, data remains in the cache 
•  Can happen in many places, compute node, I/O 

server, disk 
•  Not the same on all platforms 
•  Important to study your own application’s 

performance rather than look at peak numbers 



Data Distribution  
in Parallel File Systems 

28 Slide Rob Ross, Rob Latham at ANL 



Locking in Parallel File Systems 
Most parallel file systems use locks to manage concurrent access 
to files 
• Files are broken up into lock units, (also called blocks) 
• Clients obtain locks on units that they will access before 
I/O occurs 
• Enables caching on clients as well (as long as client has a lock, it 
knows its cached data is valid) 
• Locks are reclaimed from clients when others desire access  

29 

If an access touches any 
data in a lock unit, the 
lock for that region must 
be obtained before access 
occurs. 

Slide from Rob Ross, Rob Latham at ANL 



Locking and Concurrent Access 

30 Slide from Rob Ross, Rob Latham at ANL 

Question -- what would happen if writes were smaller than lock units? 



3D (reversing the decomp) 

Logical!

Physical!

Slide from John Shalf 



3D (block alignment issues) 

720 bytes! 720 bytes!

Logical!

Physical!
8192 bytes!

• Block updates require mutual exclusion!
• Block thrashing on distributed FS!
• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation!
• Unaligned block accesses can kill performance! (but are necessary in practical I/O 
solutions)!

Writes not aligned !
to block boundaries!

Slide from John Shalf 



Small Writes 

How will the parallel file system perform with 
small writes (less than the size of a lock unit)? 

33 



Now from the User’s point of 
view 

34 



Why you might need to do I/O 

•  Checkpoint/Restart files  
–  System or node could fail; protect your 

application so you don’t have to start from the 
beginning 

–  Need to run longer than wall clock time allows 

•  Analysis files 
•  Visualization files 
•  Out-of-core algorithm: 



Serial I/O  

0 1 2 3 4 

File 

processors 

•  Each processor sends its data to the 
master who then writes the data to a 
file 
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•  Advantages 
• Simple 
• May perform ok for very small IO sizes 

•  Disadvantages 
• Not scalable 
• Not efficient, slow for any large number 
of processors or data sizes 

•  May not be possible if memory 
constrained 



Parallel I/O Multi-file  

0 1 2 3 4 

File File File File File 

processors 

• Advantages 
• Simple to program 
• Can be fast -- (up to a point) 

• Disadvantages 
• Can quickly accumulate many files 
• Hard to manage 
• Requires post processing 
• Difficult for storage systems, HPSS, to handle many small files 
• Can overwhelm the file system with many writers 

5 

File 

• Each processor writes its own data to a separate file 



Flash Center IO Nightmare… 
•  Large 32,000 processor run on LLNL BG/L 
•  Parallel IO libraries not yet available 
•  Intensive I/O application 

–  checkpoint files .7 TB, dumped every 4 hours, 
200 dumps 

•  used for restarting the run 
•  full resolution snapshots of entire grid 

–  plotfiles - 20GB each, 700 dumps 
•  coarsened by a factor of two averaging 
•  single precision 
•  subset of grid variables 

–  particle files 1400 particle files 470MB each 
•  154 TB of disk capacity 
•  74 million files! 
•  Unix tool problems 
•  Took 2 years to sift though data, sew files together 



Parallel I/O Single-file  

0 1 2 3 4 

File 

processors 

• Advantages 
• Single file 
• Manageable data 

• Disadvantages 
• Shared files may not perform as well as one-file-per-processor 
models 
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• Each processor writes its own data to the same file 
using MPI-IO mapping 



Reduced Writers to Single-file  

0 1 2 3 4 

File 

processors 

• Best performance when # of writers is multiple of (1-4) # of IO nodes 
• Subset of processors writes data to single file 
• Advantages 

• Single file; manageable data 
• Better performance than all tasks writing for high concurrency jobs 

• Disadvantages 
• This is a pain to program 
• User shouldn’t have to do this! 

5 

Users don’t need to do this at the application layer 



Stressing the I/O System 
•  Computational science applications exhibit 

complex I/O patterns that are unique, and how 
we describe these patterns influences 
performance. 

•  Accessing from large numbers of processes 
has the potential to overwhelm the storage 
system. How we describe the relationship 
between accesses influences performance. 

•  In some cases we simply need to reduce the 
number of processes accessing the storage 
system in order to match number of servers 
or limit concurrent access. 

41 Slide from Rob Ross, Rob Latham at ANL 



Access Patterns 
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Access Patterns 

Memory 

File 

Contiguous 

Memory 

File 

Contiguous in 
memory, not in file 

Memory 

File 

Contiguous in file, 
not in memory 

Memory 

File 

Dis-contiguous  
Mem 

File 

Bursty 
Ti

m
e 

Memory 

File 

Out-of-Core 



I/O in Astrophysics 

•  What are the common 
characteristics of 
astrophysics applications? 
–  Often have LOTS of data 

•  Use all memory per core 
•  Dump checkpoint and analysis files 

–  Usually grid based 
•  Structured/unstructure/adaptive 

grids 
•  Can often collect data into large 

buffers and chunks 
•  Regularly ordered, can be 

contiguous 
•  Possible non-contiguous data with 

3d decomposition 

–  Particles data can be irregular  
–  Some applications are out of 

out of core 
Images from  Dr. Nordhaus, Prof Burrows, Prof. Lamb, Dr. Chen  



MPI-IO 
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What is MPI-IO? 

•  Parallel I/O interface for MPI programs 
•  Allows users to write shared files with a 

simple interface 
•  Key concepts: 

–  MPI communicators 
–  Derived data types 
–  File views 

•  Define which parts of a file are visible to a given 
processor 

•  Can be shared by all processors, distinct or partially 
overlapped 

–  Collective I/O for optimizations 

46 
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Independent and Collective I/O 

•  Independent I/O operations specify only what a single process will 
do 
–  Independent I/O calls obscure relationships between I/O on other 

processes  
•  Many applications have phases of computation and I/O 

–  During I/O phases, all processes read/write data 
•  Collective I/O is coordinated access to storage by a group of 

processes 
–  Collective I/O functions are called by all processes participating in I/O 
–  Allows I/O layers to know more about access as a whole, more 

opportunities for optimization in lower software layers, better 
performance 

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5 

Independent I/O Collective I/O 

Slide from Rob Ross, Rob Latham at ANL 



MPI-IO Optimizations 

•  Collective Buffering 
–  Consolidates I/O requests from all procs 
–  Only a subset of procs (called aggregators) write 

to the file 
–  Key point is to limit writers so that procs are not 

competing for same I/O block of data 
–  Various algorithms exist for aligning data to block 

boundaries 
–  Collective buffering is controlled by MPI-IO hints: 

romio_cb_read, romio_cb_write, cb_buffer_size, 
cb_nodes, cb_config_list 

48 



When to use collective buffering 

•  When to use collective buffering  
–  The smaller the write, the more likely it is to 

benefit from collective buffering 
–  Large contiguous I/O will not benefit from 

collective buffering.  (If write size is larger than I/O 
block then there will not be contention from 
multiple procs for that block.) 

–  Non-contiguous writes of any size will not see a 
benefit from collective buffering 

49 



MPI-IO Summary 

•  MPI-IO is in the middle of the I/O stack 
•  Provides optimizations typically low 

performing I/O patterns (non-contiguous I/O 
and small block I/O) 

•  You could use MPI-IO directly, but better to 
use a high level I/O library 

50 



High Level Parallel I/O 
Libraries 
(HDF5) 

51 



What is a High Level Parallel I/O 
Library? 

•  An API which helps to express scientific 
simulation data in a more natural way 
–  Multi-dimensional data, labels and tags, non-

contiguous data, typed data 
•  Typically sits on top of MPI-IO layer and 

can use MPI-IO optimizations 
•  Offer  

–  Simplicity for visualization and analysis 
–  Portable formats - can run on one machine and 

take output to another 
–  Longevity - output will last and be accessible 

with library tools and no need to remember 
version number of code 



IO Library Overhead 

Data from Hongzhang Shan!

Very little, if any overhead from HDF5 for one file per 
processor IO compared to Posix and MPI-IO 



Common Storage Formats 

•  ASCII:   
–  Slow 
–  Takes more space! 
–  Inaccurate 

•  Binary 
–  Non-portable (eg. byte ordering and types sizes) 
–  Not future proof 
–  Parallel I/O using MPI-IO 

•  Self-Describing formats 
–  NetCDF/HDF4, HDF5, Parallel NetCDF 
–  Example in HDF5: API implements Object DB model in portable file 
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO) 

•  Community File Formats 
–  FITS, HDF-EOS, SAF, PDB, Plot3D 
–  Modern Implementations built on top of HDF, NetCDF, or other self-describing 

object-model API 

Many NERSC 
users at this level.  
We would like to 

encourage users to 
transition to a 

higher IO library 



But what about performance? 
•  Hand tuned I/O for a particular application and 

architecture will likely perform better, but … 
•  Purpose of I/O libraries is not only portability, 

longevity, simplicity, but productivity 
•  Using own binary file format forces user to 

understand layers below the application to get 
optimal IO performance 

•  Every time code is ported to a new machine or 
underlying file system is changed or upgraded, 
user is required to make changes to improve IO 
performance 

•  Let other people do the work 
–  HDF5 can be optimized for given platforms and file 

systems by library developers 
•  Goal is for shared file performance to be ‘close 

enough’ 



HDF5 Data Model 

•  Groups 
–  Arranged in directory 

hierarchy 
–  root group is always ‘/’ 

•  Datasets 
–  Dataspace 
–  Datatype 

•  Attributes 
–  Bind to Group & Dataset 

•  References 
–  Similar to softlinks 
–  Can also be subsets of 

data 

“/”!
(root)!

“Dataset0”!
type,space!

“Dataset1”!
type, space!

“subgrp”!

“time”=0.2345!

“validity”=None!

“author”=Jane Doe!

“Dataset0.1”!
type,space!

“Dataset0.2”!
type,space!

“date”=10/24/2006!



Example HDF5 file output 
HDF5 "example_file.h5" { 
GROUP "/" { 
   DATASET "hamiltonian_000" { 
      DATATYPE  H5T_IEEE_F64LE 
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) } 
      DATA { 
      (0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
      } 
   } 
   DATASET "hamiltonian_001" { 
      DATATYPE  H5T_IEEE_F64LE 
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) } 
      DATA { 
      (0): 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
      } 
   } 
   DATASET "hamiltonian_002" { 
      DATATYPE  H5T_IEEE_F64LE 
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) } 
      DATA { 
      (0): 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 
      } 
   } 
} 



The HDF Group 

•  HDF5 is maintained by a non-profit company called 
the HDF Group 

•  Example code and documentation can be found 
here: 

•  http://www.hdfgroup.org/HDF5/ 



Recommendations 
•  Think about the big picture 

–  Run time vs Post Processing trade off 
–  Decide how much IO overhead you can afford 
–  Data Analysis 
–  Portability 
–  Longevity 

•  H5dump works on all platforms 
•  Can view an old file with h5dump 
•  If you use your own binary format you must keep track of 

not only your file format version but the version of your 
file reader as well 

–  Storability 



File Striping on Lustre File 
System 

60 



What is File Striping? 

•  Lustre file systems are made up of an 
underlying set of parallel I/O servers  
–  OSSs (Object Storage Servers) - nodes dedicated to 

I/O connected to high speed torus interconect 
–  OSTs (Object Storage Targets) software abstraction 

of physical disk (1 OST maps to 1 LUN) 
•  File is said to be striped when read and write 

operations access multiple OSTs concurrently 
•  Striping can increase I/O performance since 

writing or reading from multiple OSTs 
simultaneously increases the available I/O 
bandwidth 



Default Striping on Galera /work 

•  3 parameters characterize striping pattern of a file  
–  Stripe count 

•  Number of OSTs file is split across 
•  Default is 1 

–  Stripe size  
•  Number of bytes to write on each OST before cycling to next OST 
•  Default is 1MB 

–  OST offset  
•  Indicates starting OST 
•  Default is round robin across all requests on system 

I/O 
Servers 

OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23 

0,24 1,25 2,26 3,27 4,28 5,29 23,47 



A Stripe Count of 2 

•  Pros 
–  Get 2 times the bandwidth you could from using 1 OST 
–  Max bandwidth to 1 OST ~ 350 MB/Sec 
–  Using 2 OSTs ~700 MB/Sec 

•  Cons  
–  For better or worse your file now is in 2 different places 
–  Metadata operations like ‘ls -l’ on the file could be slower 
–  For small files (<100MB) no performance gain from striping 

I/O 
Servers 

OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23 

0,24 1,25 2,26 3,27 4,28 5,29 23,47 



What’s the best stripe count 
for a file system? 

•  Depends on the work load of the system and size of disks 
•  Balance  

–  Should work reasonably well for most users 
•  Protection  

–  Each OST is backed up by a physical disk (LUN) 
–  Stripe count of 1 leave us vulnerable to single user writing out 

huge amount of data filling the disk 
•  Striping of 2 is a reasonable compromise, although not 

good for large shared files 

I/O 
Servers 

OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 23 

0,24 1,25 2,26 3,27 4,28 5,29 23,47 



One File-Per-Processor IO with 
Stripe Count of 1 

•  Use all OSTs but don’t add more 
contention than is necessary 

4 OSTs 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 

Interconnect Network 

0 1 2 3 4 5 40,000 

OSS 19 



Shared File I/O with Default Stripe 
Count 2 

•  All processors writing shared file will write to 2 OSTs 
•  No matter how much data the application is writing, it won’t 

get more than ~700 MB/sec (2 OSTs * 350 MB/Sec) 
•  Less sophisticated than you might think - no optimizations 

for matching processor writer to same OST 
•  Need to use more OSTs for large shared files 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 

Torus Network 

0 1 2 3 4 5 38,000 

OSS 24 



Shared File I/O with Stripe Count 48 

•  Now Striping over all OSTs 
•  Increased available bandwidth to application 

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 

0 1 2 3 4 5 38,000 

OSS 24 

Interconnect Network 



Changing the Default Stripe Count 
•  A number of applications will see benefits from 

changing the default striping 
•  Striping can be set at a file or directory level 
•  When striping set on a directory: all files created in that 

directory will inherit striping set on the directory 

•  Stripe count - # of OSTs file is split across 
•  Stripe size - # bytes written on each OST before cycling 

to next OST 
•  OST offset - indicates starting OST  

lfs setstripe <directory|file> -c stripe-count –s stripe-size –o offset  

Example: change stripe count to 10 
lfs setstripe mydirectory -c 10 



Striping Summary 
•  Galera Default Striping 

–  Stripe count 1 (data not split over OSTs) 
–  Stripe size - 1MB 
–  OST offset - round robin starting 

•  One File-Per-Processor I/O or shared files   
< 10 GB 
–  Keep default, stripe count 1 

•  Medium shared files: 10GB – 100sGB 
–  Set stripe count ~4-20 

•  Large shared files > 1TB 
–  Set stripe count to 20 or higher, maybe all OSTs? 

•  You’ll have to experiment a little 



Best Practices 

•  Do large I/O: write fewer big chunks of data 
(1MB+)  rather than small bursty I/O 

•  Do parallel I/O.  
–  Serial I/O (single writer) can not take advantage of 

the system’s parallel capabilities. 
•  Stripe large files over many OSTs. 
•  If job uses many cores, reduce the number 

of tasks performing IO  
•  Use a single, shared file instead of 1 file per 

writer, esp. at high parallel concurrency. 
•  Use an IO library API and write flexible, 

portable programs. 



NERSC is enabling new high quality science across 
disciplines, with over 1,600 refereed publications last year 
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MPI Poll 
(Steering Friday’s Parallelism Lecture) 

A.   ASTROSIM 2010 is the first time I’ve 
been exposed to MPI applications 

B.   I use MPI, but don’t know many 
details 

C.   I have used MPI extensively, but 
would be interested in learning more 

D.   If I have to hear one more MPI talk, I’ll 
go have coffee instead 



OpenMP 

A.   What’s OpenMP? 

B.   I’ve used/tried OpenMP, but don’t 
know many details 

C.   I write hybrid MPI/OpenMP codes 
with fluency. 



Extra 
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Common Physical Layouts 
For Parallel I/O 

•  One File Per Process 
–  Terrible for HPSS! 
–  Difficult to manage 

•  Parallel I/O into a single file 
–  Raw MPI-IO 
–  pHDF5 pNetCDF 

•  Chunking into a single file 
–  Saves cost of reorganizing data 
–  Depend on API to hide physical layout 
–  (eg. expose user to logically contiguous array even though it 

is stored physically as domain-decomposed chunks) 



Data Sieving Write Operations 

Buffer 

Memory 

File 

Data Sieving Write Transfers 

! Data sieving for writes is 
more complicated 
–  Must read the entire region first 
–  Then make changes in buffer 
–  Then write the block back 

! Requires locking in the 
file system 
–  Can result in false sharing 

(interleaved access) 
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Noncontiguous I/O Optimization:  
Data Sieving 

•  Data sieving is used to 
combine lots of small 
accesses into a single 
larger one 
–  Remote file systems (parallel or 

not) tend to have high latencies 
–  Reducing # of operations 

important 

•  Similar to how a block-
based file system interacts 
with storage 

•  Trade off - read big data 
chunks, but need more 
memory 

Buffer 

Memory 

File 

Data Sieving Read Transfers 

77 Slide material from Rob Ross, Rob Latham at ANL 
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Collective I/O Optimization:  
Two-Phase I/O 

•  Problems with independent, noncontiguous access 
–  Lots of small accesses 
–  Independent data sieving reads lots of extra data, can exhibit 

false sharing 
•  Idea: Reorganize access to match layout on disks 

–  Single processes use data sieving to get data for many 
•  Second “phase” redistributes data to final destinations 
•  Two-phase writes operate in reverse (redistribute then I/O) 

Two-Phase Read Algorithm 

p0 p1 p2 p0 p1 p2 p0 p1 p2 

Phase 1: I/O Initial State Phase 2: Redistribution 

Slide from Rob Ross, Rob Latham at ANL 


